
Chapter 10

Binomial Coefficients

10.1 Basic properties

Recall that
(

n
k

)
is the number of k-element subsets of an n-element set, and

(
n

k

)
=

n!

k!(n− k)!
=

∏k−1
i=0 (n− i)

k!
.

The quantities
(

n
k

)
are called binomial coefficients because of their role in the Binomial

Theorem, apparently known to the 11th century Persian scholar Omar Khayyam.
Before we state and prove the theorem let us consider some important identities
that involve binomial coefficients. One that follows immediately from the algebraic
definition is

(
n

k

)
=

(
n

n− k

)
.

This also has a nice combinatorial interpretation: Choosing a k-element subset B
from an n-element set uniquely identifies the complement A \ B of B in A, which is
an (n−k)-subset of A. This defines a bijection between k-element and (n−k)-element
subsets of A, which implies the identity.

Another relation between binomial coefficients is called Pascal’s rule, although it
was known centuries before Pascal’s time in the Middle East and India:

(
n

k − 1

)
+

(
n

k

)
=

(
n + 1

k

)
.
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This can be easily proved algebraically:(
n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n + 1− k)!
+

n!

k!(n− k)!

=
n!k

k!(n + 1− k)!
+

n!(n + 1− k)

k!(n + 1− k)!

=
n!k + n!(n + 1− k)

k!(n + 1− k)!

=
(n + 1)!

k!(n + 1− k)!

=

(
n + 1

k

)
.

Pascal’s rule also has a combinatorial interpretation:
(

n+1
k

)
is the number of k-element

subsets of an n-element set A. Fix an element a ∈ A. A subset of A either contains
a or it doesn’t. k-element subsets of A that do not contain a are in fact k-element
subsets of A \ {a} and their number is

(
n
k

)
. k-element subsets of A that do contain a

bijectively correspond to (k − 1)-element subsets of A \ {a}, the number of which is(
n

k−1

)
. The identity follows.

Another illuminating identity is the Vandermonde convolution:(
m + n

l

)
=

l∑
k=0

(
m

k

)(
n

l − k

)
.

We only give a combinatorial argument for this one. We are counting the number of
ways to choose an l-element subset of an (m + n)-element set A. Fix an m-element
subset B ⊆ A. Any l-element subset S of A has k elements from B and l−k elements
from A \B, for some 0 ≤ k ≤ l. For a particular value of k, the number of k-element
subsets of B that can be part of S is

(
m
k

)
and the number of (l − k)-element subsets

of A \ B is
(

n
l−k

)
. We can now use the sum principle to sum over the possible values

of k and obtain the identity. An interesting special case is

n∑
k=0

(
n

k

)2

=

(
2n

n

)
.

It follows from the Vandermonde convolution by taking l = m = n and remembering
that

(
n
k

)
=
(

n
n−k

)
.

10.2 Binomial theorem

Theorem 10.2.1. For n ∈ N and x, y ∈ R,

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.
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Proof. By induction on n. When n = 0 both sides evaluate to 1. Assume the claim
holds for n = m and consider the case n = m + 1.

(x + y)m+1 = (x + y) · (x + y)m (10.1)

= (x + y) ·
m∑

k=0

(
m

k

)
xkym−k (10.2)

= x ·
m∑

k=0

(
m

k

)
xkym−k + y ·

m∑
k=0

(
m

k

)
xkym−k (10.3)

=
m∑

k=0

(
m

k

)
xk+1ym−k +

m∑
k=0

(
m

k

)
xkym+1−k (10.4)

=
m+1∑
k=1

(
m

k − 1

)
xkym+1−k +

m∑
k=0

(
m

k

)
xkym+1−k (10.5)

=

(
xm+1 +

m∑
k=1

(
m

k − 1

)
xkym+1−k

)
+

(
ym+1 +

m∑
k=1

(
m

k

)
xkym+1−k

)
(10.6)

= xm+1 + ym+1 +
m∑

k=1

((
m

k − 1

)
+

(
m

k

))
xkym+1−k (10.7)

= xm+1 + ym+1 +
m∑

k=1

(
m + 1

k

)
xkym+1−k (10.8)

=
m+1∑
k=0

(
m + 1

k

)
xkym+1−k. (10.9)

Here (5) follows from (4) by noting that

m∑
k=0

f(k) =
m+1∑
k=1

f(k − 1)

and (8) follows from (7) by Pascal’s rule. The other steps are simple algebraic ma-
nipulation. This completes the proof by induction.

The binomial theorem can be used to immediately derive an identity we have seen
before: By substituting x = y = 1 into the theorem we get

n∑
k=0

(
n

k

)
= 2n.

Here is another interesting calculation: Putting x = −1 and y = 1 yields

n∑
k=0

(−1)k

(
n

k

)
= 0.
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This implies ∑
k odd

(
n

k

)
=
∑

k even

(
n

k

)
= 2n−1.

This means that the number of odd-size subsets of an n-element set A is the same
as the number of even-size subsets, and equals 2n−1. This can be proved by a com-
binatorial argument as follows: Fix an element a ∈ A and note that the number of
subsets of A \ {a} is 2n−1. There is a bijective map between subsets of A \ {a} and
odd-size subsets of A, as follows: Map an odd-sized subset of A \ {a} to itself, and
map an even-sized subset B ⊆ A \ {a} to B ∪ {a}. Observe that this is a bijection
and conclude that the number of odd-sized subsets of A is 2n−1. Even-size subsets
can be treated similarly, or by noting that their number is 2n minus the number of
odd-size ones.
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